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Abstract—We introduce a counting stream register snoop filter, 
which improves the performance of existing snoop filters based 
on stream registers. Over time, this class of snoop filters loses the 
ability to filter memory addresses that have been loaded, and 
then evicted, from the caches that are filtered; they include cache 
wrap detection logic, which resets the filter whenever the 
contents of the cache have been completely replaced. The 
counting stream register snoop filter introduced here replaces the 
cache wrap detection logic with a direct-mapped update unit and 
augments each stream register with a counter, which acts as a 
validity checker; loading new data into the cache increments the 
counter, while replacements, snoopy invalidations, and evictions 
decrement it. A cache wrap is detected whenever the counter 
reaches zero. Our experimental evaluation shows that the 
counting stream register snoop filter architecture improves the 
accuracy compared to traditional stream register snoop filters for 
representative embedded workloads.  

Keywords-snoopy coherence protocol, snoop filter, stream register, 
counting stream register 

I.  INTRODUCTION 
Broadcast-based snoopy hardware coherence protocols play 

an important role in small-scale multiprocessor systems.  In a 
write-invalidate snoopy coherence protocol, whenever a value 
is modified in one of the processor’s caches, a bus transaction 
is initiated to signal the change to the other caches. Each cache 
controller in the system snoops the bus: if the requested line of 
data is present (a hit) in the respective cache, the controller 
takes the appropriate action, depending on the nature of the 
request, and the status bits associated with the line (for 
instance, it may invalidate the cache line); if the line is not 
present in the cache (a miss), then no action is taken. A 
significant number of snoops miss in most of the caches; taken 
in aggregation, these misses consume excessive energy. 

A snoop filter is a small cache-like structure that is placed 
in front of the cache itself, but provides inexact hit/miss 
information [13]. A snoop lookup either guarantees that the 
requested line is not in the cache, or returns a maybe signal, 
indicating that the line may or may not be present, and thus 
forwards the request to a cache. A snoop filter lookup 
consumes significantly less energy than a cache lookup. 

Each snoop lookup that results in a guarantee yields a net 
energy savings over a cache lookup; however, each snoop 
lookup that returns a maybe consumes more energy, as the 
cache must then be probed. Snoop filters generally yield a net 
energy savings because a significant number of lookups can be 
avoided in most cases. The challenge is to design snoop filters 
that are highly accurate, while ensuring reasonable costs for 
maintaining and updating the data contained in the snoop filter. 

One of the most effective snoop filter architectures is based 
on stream registers, which provide a compact set-based 
representation of a contiguous range of memory blocks [6, 16, 
17]. Stream registers can track the blocks that are allocated to a 
cache, which allows them to act as snoop filters; however, there 
is no efficient method to update a stream register when a block 
is removed from the cache. Over time, the accuracy of a stream 
register degrades, as it records all of the blocks that have ever 
been loaded into the cache, many of which have been evicted, 
as opposed to the exact set of blocks in the cache at a given 
time. Snoop filters based on stream registers include additional 
mechanisms to overcome these limitations, which are described 
in much greater detail in Section III. 

This paper introduces a new snoop filter architecture based 
on our notion of a counting stream register, which overcomes 
many of the limitations of existing stream register snoop filters. 
Our experiments demonstrate that counting stream registers 
filter a higher percentage of memory accesses compared to 
traditional stream registers, which improves energy savings. 

II. INCLUSIVE AND EXCLUSIVE SNOOP FILTERS 
Snoop filters can be categorized as being either inclusive or 

exclusive [1, 13]. An inclusive snoop filter records a superset 
of the blocks that are cached. A request that misses in an 
inclusive filter is guaranteed to miss in the cache, so there is no 
need to forward the request. On the other hand, a hit in an 
inclusive snoop filter may or may not hit in the cache, so the 
request must be forwarded. In contrast, an exclusive snoop 
filter maintains information about blocks that are not cached. A 
hit in an exclusive snoop filter guarantees that the cache does 
not contain the block, so there is no need to forward the 
request. A miss is inconclusive, so the request must be 
forwarded to the cache for processing.  
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A snoop filter lookup consumes less energy than a tag 
lookup in the cache. Therefore, a result indicating that a block 
is not in the cache saves energy. In contrast, an inconclusive 
result increases energy consumption, as both the filter and the 
tag array are accessed. Consequently, the system behavior must 
satisfy two key criteria for snoop filters to be effective: 

(1) The vast majority of snoop lookups are cache misses. 

(2) The snoop filters are effective, i.e., they detect would-
be cache misses correctly the majority of the time.  

If the first criterion is not satisfied, then most filter accesses 
return an inconclusive result, and the tag would be looked up 
anyway; a system without snoop filters would be more 
effective. If the second criterion is not satisfied, the majority of 
lookups do not hit in the cache, but the filter is ineffective; a 
system without snoop filters would be preferable, as it would 
eliminate a larger number of unnecessary snoop filter accesses.  

III. STREAM REGISTER SNOOP FILTERS 
Researchers at IBM introduced a Stream Register-based 

snoop filter, which was used in the Blue Gene/P supercomputer 
[6, 16, 17]. This filter is inclusive, and uses stream registers to 
encode cache blocks stored in the cache. Each stream register 
(SR) is composed of a base register, a mask register, and a 
valid bit. Intuitively, the base register encodes the starting point 
of an array under traversal, while the mask register encodes the 
entries of the array that have been accessed as offsets of the 
base. The offsets are not represented explicitly, as this would 
require a separate register for each entry. Instead, the mask 
represents a superset of the offsets that have been accessed. 

We explain the behavior of the SR-Filter with an example 
taken from IBM’s papers. Two hexadecimal addresses are 
loaded: 0x1708fb1 and 0x1708fb2. The first address is copied 
to the base register, and the mask register is initialized to all 
ones—i.e., 

base = 0x1708fb1 

mask = 0x7fffffff 

The two least significant bits of the two addresses differ. 
When the second address is loaded, the two least significant 
bits of Mask are set to zero, and Base is overwritten with the 
second address—i.e., 

base = 0x1708fb2 

mask = 0x7fffffc 

The two least significant zeroes in the mask register 
indicate that the two addresses that have been loaded into the 
register differ in the least two significant bits. The SR indicates 
that the data cache may contain four addresses—0x1708fb0, 
0x1708fb1, 0x1708fb2, and 0x1708fb3 is a superset of the two 
addresses contained in the cache. In this state, this SR can 
successfully filter any address other than the four listed above. 

Over time, more and more unique addresses will be fed to a 
given SR, and more and more of the bits in the mask will be set 
to 0. Thus, the space of all possible addresses that the stream 
register can filter will decrease over time. Eventually, all of the 
mask bits become zero, and the SR filters no further addresses. 

 There is no general mechanism to remove a specific 
address from the SR without compromising correctness. 
Instead, the SR is reset whenever the cache has been 
completely replaced relative to some initial state. This is called 
a cache wrap. Active SRs cannot just be cleared; instead, their 
contents are copied to a history SR. A history SR is treated as a 
second SR for the purpose of filtering, but its contents are not 
updated until the next wrap occurs. This organization with both 
an active and a history SR guarantees correct functionality. 

There is no need to limit the snoop filter to a single SR 
active and history pair. As shown in Figure 1, the actual filter 
contains a bank of SRs, along with cache wrap detection and 
update logic, which flushes the registers when it dectects a 
wrap. Detecting a cache wrap is not a trivial problem and may 
require significant storage and logic. The detector’s design has 
been only cursorily addressed in literature [6, 16, 17] with one 
such implementation patented [7].  

One efficient implementation, for instance, is circuitry 
tightly integrated into the cache, thus requiring a full-custom 
design methodology. Full-custom design is reasonable for 
high-performance computing, but is unreasonable for 
embedded systems, where designers are unlikely to have access 
to this type of custom memory. Memories are generally 
provided by vendors of intellectual property (IP) in the form of 
standard single- or dual-port memory generators, and 
individual macros cannot be modified without significant 
designer effort and additional cost to the system.  

A simpler SR-filter could be reset periodically, but correct 
operation requires a cache flush, which would cost significantly 
in performance and in energy. Instead, for easy implementation 
in an ASIC flow, we introduce an important modification to the 
SR-filters and make cache wrap detection or flushes 
unnecessary without deteriorating their filtering performance. 

IV. COUNTING STREAM REGISTER SNOOP FILTER 
Here, we introduce the Counting Stream Register-based 

snoop filter CSR-filter, which addresses the shortcomings of 
the SR-filter discussed in the preceding section. The CSR-filter 
eliminates the cache wrap detection logic, replacing it with a 
direct-mapped update unit instead. In the CSR-filter, each 
stream register is augmented with a counter; the counter 
bitwidth is limited by the number of lines that can be stored in 
the cache: for an 8KB cache with 32-byte lines, no more than 8 
bits would be required. The counter bitwidth is independent of 
the page size, which affects the bitwidth of the base and mask 
registers, as discussed in IBM’s papers [6, 16, 17].  

 

 
Figure 1.  Architecture of a SR-filter. 
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Figure 2.  CSR-filter hit detection logic. 

 

Figure 2 shows the snoop hit mechanism. The bus address 
is split into three parts: A set of cache lines (offset) is grouped 
into a page, and a set of bits (idx) is used to index the direct-
mapped snoop filter table. The most significant remaining bits 
(page tag) are used as the tag for the base register. When a new 
cache line is loaded, the base page register is updated with the 
page tag, and all bits of the mask register are set to 1, indicating 
that all bits of the base register are valid. In addition, the 
counter, initially set to zero, is incremented. Similar to the 
example used in Section III, after loading both the addresses 
0x1708fb1 and 0x1708fb2, the contents of the base and mask 
registers are, base = 0x1708fb2, mask = 0x7ffffffc. The value of 
the counter is 2, since the counter is incremented for every new 
cache line load and two cache lines were loaded. 

The counter is used as a validity checker and eliminates the 
need for the valid bit in the original SR-filter. Consecutive 
loads update the mask register and increment the counter. 
Cache line replacements, snoopy invalidations, and evictions 
decrement the counter i.e., an eviction or invalidation of the 
address 0x1708fb1 will decrement the counter to value 1. No 
modifications are necessary to the base and mask register 
contents. The stream register is effectively emptied when the 
counter resets to zero: this is the same functionality as cache 
wrap detection, but much simpler. The counter also eliminates 
the need to employ a cache/snoop filter flushing mechanism. 

V. EXPERIMENTAL SETUP 

A. Experimental Platform 
Our experimental platform was an internally developed 

FPGA-based soft processor emulation system running on a 
Xilinx Virtex-II FPGA. The processors in our system are 6-
stage single-threaded RISC pipelines that implement the Open- 
RISC [14] instruction set. The size and associativity of the 
instruction and data caches for each processor in the system are 
configurable. An atomic bus interconnects the processors to 
one another and to the memory controller. 

We instantiated a 5-core system that runs at 50 MHz.  The 
system includes a 32 MB off-chip DRAM, which is used as a 
shared memory, and a variety of performance counters, whose 
measurements are used to generate results. All benchmarks 
were compiled using a “newlib”-based gcc 3.4.4 tool-chain for 
the Open-RISC. 

Snoop filters were added to the OpenRISC cores thereby 
permitting us to evaluate the percentage of snoops that would 
be filtered. However, the filters sit in parallel to the L1 caches, 
and do not interfere with their operation. The performance 
numbers were estimated based on the penalty of an extra cycle 
during a “hit” in the filter for systems with SR and CSR-filters. 

We modeled a system similar to IBM’s Blue Gene/P, which 
maintains data integrity by using a write-invalidate cache 
coherence protocol with write-through L1-caches. In principle, 
a write-back cache configuration with a hardware coherence 
protocol would likely perform better; but, the configuration we 
used placed more stress on the snoop filters, which favored 
differentiation between the SR- and CSR-filters.  

B. Benchmarks 
We use the EEMBC MultiBench suite of parallel embedded 

workloads for our experimental evaluation. Table I lists the 
benchmarks that we used in our study. As our system DRAM 
capacity is limited to 32 MB, we had to limit the number of 
workloads executed and analyzed to about 75% of the total. 

The EEMBC benchmarks are written using a generic API 
that is independent of an operating system. Developers who 
wish to use the EEMBC suite must first port the system APIs to 
a specific platform, operating system, and tool chain. Our 
platform, at present, lacks an operating system; it is 
programmed using a small library of rudimentary functions that 
perform memory management, I/O operations, and facilitate 
threads. Consequently, we modified the EEMBC suite to utilize 
our software library and to execute on a 5-core system. 

The EEMBC MultiBench suite is multithreaded and is 
parallelized using a master-slave organization. One processor, 
the master, performs initialization, task management, and 
finalization; tasks are distributed to the slave processors, which 
perform the actual work. The OpenRISC processors are single-
threaded, so each slave processor executes at most one task at a 
time, while the master processor queues future tasks.  

The EEMBC benchmarks measure multicore performance 
across various degrees of computational intensity. The 
benchmark suites include workloads targeting the fields of 
image and video processing, cryptography, networking, 
encoding and automotive applications.  Image and video 
processing involve continuous memory load/store operations. 
Cryptographic benchmarks such as MD5 exploit the system’s 
computational resources and reveal memory bottlenecks, as 
several intermediate values of the ciphering are stored and 
retrieved during execution. This wide variety of the EEMBC 
workloads behavior enables us to convincingly generalize the 
results we have obtained to other embedded workloads. 

TABLE I.  EEMBC MULTIBENCH APPLICATIONS USED IN OUR STUDY. 

Category Benchmarks 

Image Processing Image rotation, RGB to CMYK 
conversion 

Video Processing H.264 video encoding 

Networking IP packet check, IP reassembly, 
TCP/IP network simulation 

Coding Huffman 

122



C. Energy Model 
A realistic estimation of the total system energy including 

the CPU pipeline, I/O and peripherals becomes specific to a 
given system, and hence, we present an isolated memory 
subsystem energy model. The model takes into account the 
energy consumption of the instruction and data caches, the 
interconnect bus, and the shared memory. It is important to 
recognize that the energy consumed by the memory subsystem 
is only a fraction of the total system energy. 

CACTI 5.3 [20] provided per-access (read/write) energy 
estimates for each memory structure in our system. This 
information was collected into tables, and we used a standard 
profiling-based table-lookup methodology to estimate energy 
consumption, similar in principle to tools used in cycle-
accurate software simulators. We used the 90nm technology 
node, which is popular in current embedded system designs, 
and determined the read energy, write energy, leakage energy, 
and snoop lookup energy for a variety of cache configurations. 
We considered both write-through and write-back caches. 

The total energy consumption of the system was modeled 
considering the number of data and instruction cache write and 
read accesses: NICR, NICW, NDCR, NDCW; and the number of bus 
transactions, NBT. The snoop energy for each data cache access 
was calculated based on the number of snoopable transactions, 
NSTRANS, and the energy consumed for a single data cache tag 
array look-up ETAGLU. This snoop energy is summed into the 
total energy consumed by the data cache.  

The energy to perform one data/instruction cache read/write 
are provided by CACTI, and are denoted by EICR, EICW, EDCR, 
and EDCW; the average energy consumed to access the shared 
memory unit is ESMRW. Let NP denote the number of processors 
in the system. The energy consumed by each instruction and 
data cache, EIC and EDC respectively, total bus energy, EB, and 
total memory subsystem energy consumption, E, are: 

EIC = NP(NICREICR + NICWEICW) 

EDC = NP(NDCREDCR + NDCWEDCW + NSTRANSETAGLU) 

EB = NBTESMRW 

E = EIC + EDC + EB. 

Many implementations exist for a cache with a given size and 
associativity. For example the cache could be banked or non-
banked; if it is banked, the number of banks may vary; etc. For 
each cache that we considered, we looked at all possible 
implementations, and, based on the results obtained from 
CACTI, selected the one that consumed the least energy. 

D. Cache Design Space Exploration 
As the behavior of workloads varies largely with different 

cache configurations, we desired to determine the best 
performing and most energy efficient cache configuration for 
each benchmark. The EEMBC benchmarks were run for 
various data and instruction cache configurations with varying 
sizes and associativity. We varied the cache sizes from 2KB to 
16KB, and considered direct-mapped and 2- and 4-way set 
associative implementations for each size; all caches used the 
Least Recently Used (LRU) replacement policy.  

The instruction and data caches, the interconnect bus and 
shared memory constitute the memory subsystem of the FPGA 
emulation platform. The energy consumed by the memory 
subsystem and the performance in terms of execution cycles is 
observed for all the cache configurations. 

Figure 3 shows an example of a design space exploration 
for the Huffman Benchmark; we performed a similar design 
space exploration for each benchmark. The configurations that 
achieve the fastest execution time and lowest energy 
consumption are marked. The results demonstrate that cache 
parameters can significantly affect the observed results. Since 
the objective of snoop filtering is to reduce memory subsystem 
energy consumption, we selected the lowest energy consuming 
cache configuration for each benchmark; further experimental 
results are reported for this configuration alone.  

VI. EXPERIMENTAL RESULTS 

A. SR- and CSR-filter Hardware Implementations 
Using CACTI 5.3 [20], we modeled the area of SR- and 

CSR-filters containing 32, 64, and 128 SRs and CSRs 
respectively.  For the SR-filter, we did not consider the area 
overhead of the update logic and cache wrap detector, which 
are considerably smaller than the registers themselves. Table II 
reports the results of the comparison.  

The CSR-filters are marginally larger than the SR-filters, 
due to the extra counter bits; however, this does not account for 
the overhead of the update and cache wrap detection logic, so 
the SR-filter is expected to be larger than the CSR-filter. 
Further experimentation will demonstrate that the CSR-filter 
handles evictions, snoopy invalidations, and replacements more 
gracefully than the SR-filter, and without the custom wrap 
detection logic; as such, we consider it to be the better choice, 
especially for cost-constrained embedded systems. 

 

 
Figure 3.  Complete cache design space exploration for the Huffman 

benchmark with energy and performance estimates for each of the 
configurations. The Low Energy configuration has a performance degradation 
of about 7% while the Best Performance configuration consumed almost 2.5 

times that of the Low Energy configuration. 

TABLE II.  AREA ESTIMATES FOR SR- AND CSR-FILTERS WITH 32, 64, 
AND 128 SRS AND CSRS RESPECTIVELY. THE SR-FILTER AREA ESTIMATE DOES 
NOT ACCOUNT FOR THE CACHE WRAP DETECTION AND UPDATE LOGIC. 

Number of SRs SR Area CSR Area 
           32 0.040 mm2 0.041 mm2  
           64 0.047 mm2 0.060 mm2 
           128 0.078 mm2 0.083 mm2 
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B. Filtering Percentages 
Next, we compare filtering effectiveness using SR- and 

CSR-filters. We considered snoop filters with 8, 16, 32, 64, and 
128 SRs and CSRs respectively; Figure 4 reports the filtering 
percentage achieved by both filters. The CSR-filter achieved an 
equal or higher filtering percentage than the SR-filter in all 
cases, due to improved handling of snoopy invalidations. 

CSR-filters with fewer registers can achieve higher filtering 
percentages than SR-filters with a larger number of registers. 
For example, observing the Huffman benchmark in Figure 4(a), 
the SR-filters show a gradual increase in filtering effectiveness 
as the number of SRs increases, while the CSR-filters display a 
consistent filtering rate of 100% across all filter sizes.  

Similarly, in Figure 4(d) the CSR-filters achieve a filtering 
rate of 95% with 32 CSRs for the H.264 Video Encoding while 
the SR-filters require twice as many SRs to achieve the same 
filtering percentage. SR-filters equaled the CSR-filters in terms 
of filtering percentage for RGB-to-CMYK with 8 SRs/CSRs; 
and H.264 Video Encoding with 64 and 128 SRs/CSRs.  

Next, we examine RGB-to-CMYK Image Conversion in 
greater detail, in order to see why CSR-filters are more 
consistent than SR-filters; pseudocode is provided as follows: 

/* Calculate complementary colors */ 
c = 255 - R; m = 255 - G; y = 255 - B; 
 
/* Find the black level K */ 
K = minimum (c,m,y) 
 
/* Correct complementary color level based on K */ 
C = c - K; M = m - K; Y = y - K; 
 

Fig. 5(a) and (b) show the filtering percentages of SR- and 
CSR-filters for 2MB and 4MB images for RGB to CMYK 
image conversion. For 4MB images, the filtering percentage of 
SR-filters starts at 80% for filters with 8 SRs, reduces linearly 
with 16 and 32 SRs, and then improves to 80% for 64 and 128 
SRs. The 8 SRs are mapped through 3 bits of the physical 
address space, while a 9-bit offset accounts for all 4 MB of the 
image. As the number of SRs increases, more bits of the 
address space are required to address the SRs, and fewer bits 
are available for the image itself. The CMYK calculation is an 
inter-dependent two-step process where several invalidations 
and modifications occur, which the CSR-filters detect, but the 
SR-filters do not. The increases the uncertainty about the data 
present in the cache (the “maybe” condition), which results in a 
snoop filter hit, thereby reducing the filtering rate shown in Fig. 
5(a). Increasing the number of SRs per filter to 64 and 128 
eliminate the uncertainty. 

Our CSR-filters act on the invalidations and modifications 
more effectively than the SR-filters, as shown in Figure 5(b). 
Like the SR-filters, the results are consistent for a 2MB image 
regardless of the number of CSRs in the filter; for a 4MB 
image, 8 and 16 CSRs appear to be insufficient, while the 
filtering percentage remains consistent for filters with 32 or 
more CSRs. For both image sizes, SR-filters achieve a 
maximum filtering percentage of 80%, while CSR-filters 
achieve a filtering percentage of 100% in most cases. 

 
Figure 4.  The CSR-filter consistently achieves a higher filtering percentage 

than the SR-filter. 

Altogether, these results demonstrate that CSR filters are 
more robust to workload variability than SR-filters, while 
achieving a better overall filtering percentage.  

C. Energy Consumption 
Our experimental analysis considers the following three 

system configurations: 

WT: Write-through caches without snoop filters. 

WTSR: Write-through caches with SR-filters. 

WTCSR: Write-through caches with CSR-filters.   
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Figure 5.  RGB-to-CMYK conversion with SR-filters (a) and CSR-filters (b). 
For SR-filters the filtering rate is inconsistent as the number of SRs increases 

for a 4MB image; for CSR-filters, the filtering rate is non-decreasing when the 
number of CSRs increases. 

As mentioned earlier, the usage of a write-through protocol 
was motivated by IBM’s Blue Gene/P supercomputer, which 
introduced SR-filters. Our goal was to show that CSR-filters 
could be more effective if used in a similar context (albeit, with 
different workloads and evaluated using a memory-limited 
emulation platform). Coherence with write-through caches is 
maintained implicitly by broadcasting invalidation messages 
for each write-through to main memory. 

Figure 6 reports the memory subsystem energy for the 
EEMBC MultiBench suite using the configurations listed 
above. For most of the benchmarks, snoop energy was around 
8-10% of the total memory subsystem energy without snoop 
filters. In many cases, SR-filters and CSR-filters were equally 
effective in terms of reducing memory subsystem energy; 
however, CSR-filters were clearly more effective for H.264 
Video Encoding, Image Rotation, and IP Reassembly.  

The granularity of the snoop filters also affects the overall 
energy consumption; RGB-to-CMYK Image Conversion is a 
typical example of this problem. The algorithm applies a 
sliding window to the image to perform the conversion. As the 
window moves, more and more addresses are added to the SRs, 
despite the fact that the working set at any given time is 
relatively small, namely the region of the window itself. Each 
new address adds more zeroes to the mask registers without a 
reset.  Nonetheless, the counting mechanism of the CSR-filters 
is more effective than the cache wrap detection and update 
logic of the SR-filters.  

These workloads do not stress the memory subsystem for 
two key reasons. First, the input data was relatively small, due 
to the fact that the system is limited to 32MB of off-chip 
SDRAM. Second, the parallelization scheme does not lead to 
complex data sharing arrangements, and the amount of data 
having multiple writers is quite limited. Consequently, we 
believe that a larger system with different workloads would 
increase the energy advantage of CSR-filters over SR-filters.  

 

 
Figure 6.  Energy consumption of write-through caches (WT), write through 
caches with SR-filters (WTSR), and write-through caches with CSR-filters 

(WTCSR) for the EEMBC MultiBench suite. Snoop energy was typically 8-
10% of total memory subsystem energy for most benchmarks. CSR-filters 
were uniformly more effective than SR-filters across the benchmark suite. 

D. Performance 
Figure 7 reports the normalized execution time of the 

benchmarks for the WT, WTSR, and WTCSR snoop filtering 
schemes described in the preceding section. The write-through 
schemes incur a significant amount of bus and memory traffic. 
Snoop filters add an extra cycle to each memory access that 
hits in the cache [13].  

The performance degradations we observed were negligible 
for most benchmarks, with a maximum of 3% for TPC/IP 
Packet Check. Altogether, our results demonstrate that the 
reduced energy consumption of snoop filters offsets the 
performance overhead. 

VII. RELATED WORK 
The most comprehensive reference on snoop filters is a 

wiki maintained at the University of Toronto [1]. 
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Figure 7.  Execution time for each benchmark, normalized to WT. The worst-

case performance overhead observed for WTSR and WTCSR was 3% for 
TCP/IP Packet Check. 

Snoop filters generally fall into one of three categories:  

Destination-based filters: attempt to eliminate tag lookups in 
response to a snoop broadcast. 

Source-based filters: attempt to reduce the number of snoop 
broadcasts. 

Other filters: rely on properties of the interconnect network, 
virtualization, or application-specific designs. 

The SR- and CSR-filters discussed in detail in this paper are 
categorized as destination-based filters. 

A. Destination-based Filters 
Most destination-based filters are classified as either 

inclusive or exclusive, as discussed in Section II.  

Inclusive filters can be further categorized as superset and 
subset filters. Superset filters identify a superset of all of the 
lines in the cache, while benefitting from a more space-efficient 
representation of this information than tracking every line. The 
SR-filters used in IBM’s Blue Gene/P [6, 16, 17] are superset 
filters, as are several other designs that track blocks using 
counting Bloom filters. The inclusive JETTY [13], one of the 
first snoop filters introduced, performs L2 snoop filtering in 
SMP systems; to improve performance, it includes a small 
table to cache snoop requests that recently missed in the local 
cache; accesses that hit in this table can be filtered a-priori. 
Ballapuram et al. [5] described a similar snoop filter that 
focuses on L1 snoops and includes some features to support 
self-modifying code.  

Strauss et al. [19] developed an inclusive subset snoop filter 
that adds a new coherence state for cache lines. A cache line is 
in the supplier state if it may provide a positive response to a 
snoop lookup; the subset filter tracks the subset of supplier 
blocks that are actually cached; it cannot filter snoops that 
access lines in other states. This particular filter was designed 
for a CMP with processors connected by a ring topology. 

Examples of exclusive filters include the exclusive JETTY 
[13] and the range filter used as part of the Blue Gene/P Snoop 
filter [6, 16, 17]. The exclusive JETTY [13] maintains a table 
of addresses that have been recently snooped and return 
negative responses. Lines are removed from the table when 
they are loaded into the cache, or to make room for new lines 
when table capacity is exceeded.  

The range filter [6, 16, 17] finds large range of addresses 
and specifies that address within (or completely outside of) that 
range are not in the cache, and can therefore be filtered. The 
range filter is useful in parallel applications where processors 
work on distinct and continuous ranges of memory. 

One last destination-based filter, introduced by Atoofian 
and Baniasadi [3], is difficult to categorize as either inclusive 
or exclusive. Each cache maintains a table of saturating 
counters (one per core). When a core sends a request to the 
cache, the first step is to check the counter. If the counter is not 
saturated, then the cache returns a negative reply, regardless of 
whether it contains a copy of the data, under the speculative 
assumption that another core will be able to provide the line. If 
no core provides the line, then the processor re-issues its 
request and all cores perform cache lookups. This filter is area 
and energy-efficient, but it is only effective for workloads that 
exhibit supplier locality; it is ineffective for other workloads. 

B. Source-based Filters 
Source-based filters allow local caches to detect that all 

other remote caches do not contain the data, and therefore 
allows them to suppress snoop broadcasts.   

A write-through cache places every write operation on the 
bus, and the increased bus traffic leads to increased snoop 
lookups at the caches. Write-back caches with cache coherence 
protocols are one of the simplest forms of source filtering. A 
write-back approach reduces bus traffic by not placing every 
cache write on the bus, and instead only writing back when a 
remote cache requests the data.  

Coherence protocols used in conjunction with write-back 
caches play an important role in source filtering as well. For 
example, the MSI protocol categorizes each cache line as 
M(odified), S(hared), or I(nvalid), while the MESI protocol 
adds an E(xclusive) state. If the local cache contains a line in 
the exclusive state, there is no need to broadcast an access to 
that line, because no other cache contains a copy.  

Atoofian et al. [4] developed a source-based snoop filter, 
which used saturating counters, sharing some principle 
similarities to their destination-based filters [3]. The filter 
predicts when remote caches are likely to supply data in 
response to a snoop broadcast; when the same processor 
services many subsequent requests, the requests are sent 
directly to the supplier, as opposed to snoop broadcasts. 

Another approach is to provide augment instructions that 
access memory with a bit that can be set to suppress snoops [5]. 
Programmers or compilers could set the bits appropriately 
based on their knowledge of the application and its behavior. 
This approach requires minimal architectural support, but 
requires the ability for a programmer or compiler to understand 
the memory layout of the program, and possibly deal with 
issues such as pointer aliasing.    

Other destination-based filters can be categorized as coarse-
grained, wherein, the filter tracks whether or not at least one 
line in a larger region is in the cache; filtering is performed on 
the granularity of regions, rather than individual lines. Ekman 
et al. [9], for example, track sharing in the operating system on 
the granularity of pages.  
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Cantin et al. [8] took a similar approach with their Region 
Coherence Array (RCA), which tracks region sizes ranging 
from 512 bytes to 8KB, which offers greater flexibility than 
fixing the granularity to the page size. Multi-granularity snoop 
filters track coarse-grained regions, but within a larger page 
[15]. Subspace snooping records sharing information for each 
memory page in the page table itself, and therefore relies on 
operating system support [10].  

RegionScout [12] and RegionTracker [22] sacrifice the 
precision of information about regions stored in the cache in 
order to achieve efficient hardware implementations. 
RegionScout maintains an incomplete list of regions that are 
not shared, and cannot answer precisely whether a region is 
shared. RegionTracker moves this information into the tag 
arrays of the cache, rather than storing it in external structures.  

C. Other Filters 
Serial snooping [18] distributes messages sequentially to 

processors, rather than via broadcast. The scheme is beneficial 
if the data is found early in the sequence, but there is a 
performance penalty if the data is found late, or is not found.  

In-network filtering [2] distributes coarse-grained 
coherence information in routers throughout the network. 
When a broadcast occurs, the routers create a multicast tree to 
send the message to cores that contain the region. The major 
limitation is that in-network filtering does not appear to be 
compatible with non-adaptive routing protocols.   

Virtualized workloads tend to have sharing limited to 
threads running on the same virtual machine, and that there is 
only need to snoop cores in the same virtual machine [11]. This 
approach involves the operating system and hypervisor, and 
special care must be taken to facilitate workload migration.   

Zhou et al. [23] used a compiler analysis to disambiguate 
the memory space of an application into private and shared data 
regions; an operating system-supported mechanism was 
proposed to suppress all snoops, except for those that access 
shared data directly. Yu and Petrov [21] exploited the fact that 
in embedded systems, important a-priori knowledge is 
available regarding task allocation, sharing patterns of the 
processor nodes, and inter-processor communication. Both of 
these mechanisms take an application-specific approach to 
snoop filter optimization. 

VIII. CONCLUSION 
The CSR-filter architecture improves significantly over the 

SR-filter architecture introduced in IBM’s Blue Gene/P 
supercomputer. The CSR-filter achieves a higher filtering 
percentage than the SR-filter, often doing so with a smaller 
number of stream registers. For the EEMBC MultiBench suite, 
the reductions in overall energy consumption were relatively 
small for two reasons: (1) our implementation platform limited 
the memory footprint; and (2) the workloads are parallelized 
into mostly independent tasks with little sharing of data. 
Nonetheless, our experiments clearly show that CSR-filters are 
more effective than SR-filters. We believe that these results 
generalize to other workloads and to L2 snoop filtering. 
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