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Abstract. Zigbee is an energy-efficient wireless IoT protocol that is
increasingly being deployed in smart home settings. In this work, we an-
alyze the privacy guarantees of Zigbee protocol. Specifically, we present
ZLeaks, a tool that passively identifies in-home devices or events from the
encrypted Zigbee traffic by 1) inferring a single application layer (APL)
command in the event’s traffic, and 2) exploiting the device’s periodic
reporting pattern and interval. This enables an attacker to infer user’s
habits or determine if the smart home is vulnerable to unauthorized en-
try. We evaluated ZLeaks’ efficacy on 19 unique Zigbee devices across
several categories and 5 popular smart hubs in three different scenarios;
controlled RF shield, living smart-home IoT lab, and third-party Zigbee
captures. We were able to i) identify unknown events and devices (with-
out a-priori device signatures) using command inference approach with
83.6% accuracy, ii) automatically extract device’s reporting signatures,
iii) determine known devices using the reporting signatures with 99.8%
accuracy, and iv) identify APL commands in a public capture with 91.2%
accuracy. In short, we highlight the trade-off between designing a low-
power, low-cost wireless network and achieving privacy guarantees. We
have also released ZLeaks tool for the benefit of the research community.
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1 Introduction

Smart home products (e.g., bulbs, outlets, sensors, etc.) allow users to control
and monitor their smart home’s environment wirelessly, but unfortunately, pose
a significant risk to users’ privacy. Prior studies have demonstrated that by in-
tercepting the IP traffic of a smart home, the attacker can determine in-home
devices [1,2,3], events [4,5], and user’s habits [6]. In practice, these attacks are
difficult to carry out, as the attacker must find a vulnerability to capture the
user’s IP network traffic (e.g., by gaining root access to the home router). Yet,
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there exists an easy privacy violation attack, i.e., simply sniffing the Internet of
Things (IoT) wireless protocol (e.g., Zighee) transmissions that are unintention-
ally emitted to up to hundreds of feet. Although the IoT traffic is encrypted to
prevent eavesdropping, researchers recently showed that the attacker can still
identify events using a-priori device signatures [7,8] and infer a few encrypted
Zigbee (Network layer) commands by exploiting the payload lengths [9].

In this work, we analyze the privacy guarantees of one of the most popular IoT
wireless protocols, Zigbee [10], that is increasingly being used in smart hubs such
as Amazon Echo Plus, Samsung SmartThings, and Philips Hue. With the launch
of more than 500 new Zigbee-certified devices in 2020 alone and the expected
sale of nearly four billion Zigbee chipsets by 2023 [11], Zigbee continues to be
the preferred choice of device manufacturers.

Our key insight is that design optimizations incorporated into Zighee to en-
able low-latency communication on low-cost resource-constrained devices funda-
mentally leak information, e.g., to keep the frame length small, Zigbee performs
encryption transformation [10] on AES encrypted output to match the message
length. This enables an eavesdropper to exploit unpadded payload lengths and
discrepancies in traffic metadata to infer every encrypted network layer (NWK)
and application layer (APL) command. Moreover, to prevent device timeout, Zig-
bee devices periodically report attributes like battery level, temperature, etc., to
the smart hub. The distinct reporting patterns and intervals inadvertently serve
as device fingerprints. In this work, we exploit device’s unique reporting patterns
and the possibility of inferring APL commands to passively determine devices
and events in the target network. Specifically, we make following contributions.

Device and Event Identification using Inferred APL Command:
We demonstrate that the event traffic of a device always includes at least one
functionality-specific APL command (such as Door Lock/Unlock), which alone
specifies the triggered event (i.e., lock/unlock) and the functional device type
(i.e., door lock). Zigbee Cluster Library (ZCL) specification [12] inherently leaks
information about all such APL commands. We attempt to infer a single func-
tionality specific APL command in the encrypted event traffic to determine event
and device type and combine manufacturer’s identity obtained from the Orga-
nizationally Unique Identifier (OUI) of the device’s MAC address to identify a
particular Zigbee device. Unlike prior works [7,8], this approach does not require
device’s event signatures and can even identify unknown events and devices®.

In practice, inferring functionality-specific APL commands is extremely chal-
lenging, and so far, no study has attempted it. This is because the metadata of
functionality-specific APL commands is immensely similar to a hundred other
generic APL commands. Few APL commands are also manufacturer config-
urable, which prevent us from exploiting only the payload length, packet di-
rection, and radius (hops) to infer APL commands using prior NWK command
inference approach [9]. We utilize frame format guidelines [12] to identify all pos-
sible APL commands with payload lengths overlapping with the functionality-
specific APL commands and their response commands (if any), e.g., door unlock

3 Zigbee Devices not previously observed, i.e., no a-priori access to their traffic.
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request and response. The discrepancies in the traffic’s metadata, together with
the device’s logical type (electricity-powered or battery-powered), are used to
construct inference rules for each target functionality-specific APL command.

Device Identification using Periodic Reporting Patterns: Zigbee
devices periodically report attributes to the smart hub. We exploit reporting
patterns and intervals to create unique device fingerprints. This approach is use-
ful for identifying a known device with unpatched vulnerability (e.g., to spread
malware) in the Zigbee network, which has minimal user activity. Unlike prior
works [7,8] that analyze Zigbee traffic generated due to event occurrence only:
this approach can identify devices even when no event is triggered. Given that
every device’s current consumption varies based on its communication pattern
and hardware, the periodic reporting time is not trivial to modify as it directly
impacts device certification requirement of minimum 2-years battery life [13].

Automating event and device identification with ZLeaks tool: We
developed a comprehensive privacy analysis tool for Zigbee protocol, named
ZLeaks [14], that automates the aforementioned identification techniques. ZLeaks
takes the Zigbee traffic as input and passively determines events and devices in
the smart home. It can also extract devices’ reporting signatures automatically.

We experimentally evaluated ZLeaks on by far the most extensive device
set used in privacy analysis of Zigbee protocol including 5 popular smart hubs
(SmartThings, Amazon Echo Plus, Philips Hue, OSRAM Lightify, and Sengled)
and 27 commercial off-the-shelf Zigbee devices, out of which 19 devices were
unique. The experiments were performed in 1) an isolated RF shield and 2) a liv-
ing smart-home “Mon(IoT)r Lab” [15] with multiple IoT and non-IoT networks
operating simultaneously. Furthermore, we validated the findings on third-party
capture files available on Wireshark [16] and Crawdad [17] forums. Our results
indicate that ZLeaks identified event and device information using inferred APL
commands with 83.6% accuracy and devices using reporting patterns with 99.8%
accuracy. Also, we inferred functionality-specific APL commands in a public Zig-
bee capture, using our command inference rules, with 91.2% accuracy.

2 Background and Motivation

2.1 Zigbee Overview

Zigbee is one of the most popular low-cost, low-power, wireless protocols specif-
ically designed for battery-powered applications in smart ecosystems such as
smart homes and industries. Zigbee is built on top of the low data-rate IEEE
802.15.4 wireless personal area networking (PAN) standard and implements the
physical (PHY) and medium access control (MAC) layers as defined by the IEEE
standard. Most commercial Zigbee devices operate at a data rate of 250 kbps in
the 2.4 GHz band (divided into 16 channels, each 5 MHz apart). Some Zigbee
devices also operate in the unlicensed frequency bands of 784, 868, and 915 MHz.

Network Architecture: Zigbee supports both centralized and distributed net-
work architectures. Centralized networks comprise of three logical device types;
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Fig. 1. Zigbee’s Protocol Stack comprising of PHY, MAC, NWK and APL layers

Zigbee coordinator (ZC), Zigbee router (ZR), and Zigbee end-device (ZED),
while the distributed networks have ZR and ZED only. ZEDs do not route traffic
and may sleep to conserve battery, making them appropriate for battery-powered
devices (e.g., sensors, door locks). ZRs are responsible for routing traffic between
nodes and storing messages intended for ZEDs until they are requested. Every
Zigbee network has one ZC that is responsible for network formation, issuing
network identifiers, and logical network addresses. ZC also acts as a trust center
to authenticate new nodes and distribute keys. ZRs and ZCs are powered devices
(e.g., bulbs, smart hubs) and do not sleep during the network’s lifetime. Besides,
Zigbee supports connectivity in star, mesh, and tree topologies. Zigbee does not
implement MAC address randomization. Each Zigbee node has a manufacturer-
assigned 64-bit MAC (extended) address that is mapped to a unique 16-bit
network (logical) address by the ZC during device pairing. The logical address
is used for routing, while the extended address is used for authentication.

Zigbee Protocol Stack (Figure 1): Zigbee standard [10] defines the function-
alities of the Network and Application layers. The Network layer is responsible
for network formation and management, routing and address allocation. There
are 12 NWK commands, such as Link Status, Route Record, Route Reply, etc.
Zigbee’s Application layer comprises of Application Support (APS) sublayer,
Zigbee Device Object (ZDO), and Application Framework. APS sublayer main-
tains binding tables and address mappings, and ZDO implements the device
in one of the three logical roles (ZC, ZR, or ZED). The application framework
offers pre-defined profiles (e.g., home automation, health care, etc.) and func-
tional domains called clusters (e.g., lighting, security, etc.) for end-manufacturers
to support device interoperability. Broadly, APL commands are either function-
ality specific or generic (such as Read Attributes, Report Attributes etc.).

Security and Privacy: Zigbee uses 128-bit AES encryption to provide payload
confidentiality and message authentication. The standard also has the provision
for integrity-protection using 128-bit AES CCM* block cipher and replay protec-
tion using a 32-bit frame counter. Each Zigbee device has a pre-installed global
trust center link key, which is used if the manufacturer does not provide any
unique link key or QR install code. The Network (encryption) key is randomly
generated by ZC during network formation and is common to all Zigbee nodes.
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Fig. 2. Communication Flow in a Zigbee Home Network.

2.2 System and Threat Model

We assume a Zigbee home network, similar to Figure 2, where a smart hub
(ZC) is paired with several popular Zighee devices (ZRs and ZEDs). The hub
is connected to an IP gateway to update devices’ states on the cloud and the
user’s smart app. The smart home’s occupants carry out routine activities and
can control devices via the smart app from virtually anywhere. We assume that a
passive attacker is collecting Zigbee transmissions using a wireless Zigbee sniffer
from within the wireless communication range of the victim network. We use T1
CC2531 Zigbee sniffer [18], equipped with the standard omnidirectional antenna,
to receive Zigbee transmissions at a distance of 20 m*. The attacker does not
need access to the smart app or physical presence inside the smart home; he can
even implant a Zigbee sniffer nearby and observe the traffic remotely.

The attacker analyses the captured Zigbee traffic to passively identify the
events and devices using either command inference or periodic reporting pat-
terns, irrespective of the network or link keys, device’s QR code, or specific
events like device pairing or rejoining, which aid the attacker to extract the Net-
work key. In other words, we assume a fully operational Zighee network with
subject devices (door locks, bulbs, outlets, and various types of sensors) config-
ured and commissioned a-priori. The attacker only requires some background
knowledge of the Zigbee standard. There is no need to collect event signatures
for each device. Only when a specific device is required to be identified in the
target smart home with zero user activity, the attacker needs the device’s re-
porting signatures. Note that Zigbee packets are exchanged between the hub
and end-devices only; so even having access to the user’s smart app and reverse
engineering it would not leak information regarding the Zigbee commands.

Challenges: The AES-128 algorithm used by Zigbee has proven confusion and
diffusion properties and prevents eavesdropping. The attacker can resort to using
the existing NWK command inference scheme [9] based on payload size, radius,
and actively determined logical device type to infer NWK frames. Unfortunately,
the events and device information is embedded in APL commands where the
radius is insignificant. Also, unlike the 12 NWK commands, which have defined
payload lengths [10], there are more than a hundred APL commands, most of

4 Range can be extended with a high gain directional antenna



6 N. Shafqat et al.

¢ Infer func specific APL  : P s MAC ¢ Device +
(i command, event and device " 5 1> §<e5 >\ event identified
B H B ! No
- =
No. event identified
......................................

° Sn|ﬁ : : :........,..,.': . .
H i :Perform: Do the periodic reporting : Yes
i Zigbee : : Network i— : - : - —
: NS OrK ==, Nog: pattern & interval correlate i—( Device Identified
: traffic : i Mapping:

Fig. 3. Inference Strategy: If event occurs, infer functionality specific APL command
and combine MAC identifier to identify the device and event. If there’s no event,
identify device using periodic signature correlation. If it fails, wait for an event.

which are manufacturer configurable (e.g., Report Attributes, Read Attributes,
etc.). Hence there exist several overlappings at each payload length. These factors
make the existing approach [9] insufficient to passively infer APL commands.
The unencrypted IEEE 802.15.4 frames in the Zigbee traffic also provide
negligible information regarding the devices and events, e.g., the frequently ex-
changed TEEE 802.15.4 ACK does not mention network or MAC address for the
source or destination, and the incremental frame sequence numbers roll back
after 256, making it extremely challenging to trace the communicating nodes.
Moreover, existing research studies rely on a-priori event signatures for the
identification of events [7,8]. In practice, user events are infrequent, e.g., during
nighttime. In this idle state, the devices and hub exchange periodic reports only
and do not leak any device information. Hence, identifying a device without event
signatures or in the absence of events are still open problems for the attacker.

3 Passive Inference Attacks on Zigbee

3.1 Attack Overview

As illustrated in Figure 3, our fundamental goal is to invade the smart home’s
privacy by determining Zigbee devices, triggered events, and encrypted com-
mands exchanged in the home. We use a low-cost wireless Zigbee receiver,
TI-CC2531 [18], to identify and tune to the target network’s communication
frequency channel and sniff the Zigbee traffic. To maximize the amount of in-
formation extracted from the sniffed traffic, we first perform network mapping,
whereby the logical device type of each node (ZC, ZR, or ZED) is determined.

If an event occurs, we use proposed inference rules (Section 3.3) to identify
the functionality-specific APL command in the event’s traffic, which further
reveals event and device type. The manufacturer is revealed from the device’s
MAC identifier. Specifically, we exploit the device’s logical type and metadata
variations in APL commands, that stem from power consumption optimizations
incorporated into Zigbee. Unlike prior works [7,8], we do not require a-priori
event signatures for every device and can infer unknown devices and events.

In addition, we leverage the device’s reporting pattern and interval to create
unique reporting signatures (Section 3.4). Whenever a known device with un-
patched vulnerability needs to be identified in the target network with no event
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triggers, we correlate the device’s reporting signature with the reporting pat-
tern and interval of every device in the target’s Zigbee traffic. If the reporting
signatures are unavailable, we wait for an event to identify the device using com-
mand inference. To the best of our knowledge, no prior work has demonstrated
device identification, using APL commands, without collecting event signatures
or through periodic reporting patterns. Below we explain the attack phases.

3.2 Passive Network Mapping

To keep the frame length small, Zigbee uses logical address for routing, the
source’s MAC address for authentication, and excludes the destination’s MAC
address. Thus, to identify the type and model of the target device, it is essential
to keep a mapping of logical address, MAC address, and logical type (ZC, ZED,
or ZR) for each logical address (i.e., node) in the traffic. Zigbee specification [10]
identifies ZC as the node having 0x0000 logical address. We observed that for
IEEE 802.15.4 Data Requests specifically, the source node is ZED and the des-
tination node (other than 0x0000) is ZR. In addition, we recognized ZRs as the
destination node of any Zigbee frame that has source routing information in the
metadata, and that node does not send IEEE 802.15.4 Data Requests. ZR can
also be identified as the source of NWK commands namely Link Status, Rejoin
Response, and Network Report, provided the node address is not 0x0000 [9].

3.3 Device and Event Identification using Inferred APL Command

Although devices exhibit unique event patterns, the event traffic of same func-
tional devices always includes same functionality-specific APL command, e.g.,
bulbs use color control command for color change. It happens because device
manufacturers use defined Zigbee clusters to support vendor interoperability.
This is validated from the official Zigbee compliance documents, e.g., Light-
ify [19] and Sengled [20] bulbs use same APL commands. Below we describe our
scheme to devise and use command inference rules to identify events and devices.

Inference Algorithm: The functionality-specific APL commands of interest
(OnOff, Color Control, Level Control, Lock/Unlock, and Zone Status (short for
IAS Zone Status Change) have fixed payload lengths. However, there exist over-
lappings with several generic APL commands within the encrypted traffic. This
happens because there are more than hundred APL commands, many of which
are manufacturer configurable and only have minimal payload and attribute size
specified in the standard [12]. Thus, command xyz with a minimum 10-byte
payload and 3-byte attribute size has a payload subset of 10, 13, 16 bytes etc.
As shown in Figure 4, to devise inference rule for a functionality-specific
APL command, we utilize APL frame formats [12] to first identify all APL
commands that have overlapping payload lengths and packet direction with the
target command and its response command (if any), e.g., Door Lock/ unlock
request and response. Next, a test event is triggered, and overlapping commands



8 N. Shafqat et al.

Devising APL command Inference rules Analyzing encrypted Zigbee capture

[ Select a functionality specific APL command ] [ Filter APL commands sent/ received by each device ]

e ——— " + . Use inference rules to identify functionality specific
. find overlapping [ .
APL commands:- src, dst, payload APL command, event type and device type
lengths, response command APL commands *typ P

Check if MAC OUlI is real

[ Leverage metadata + device functionality to devise rule [ ]
+ Yes No.
- - Device and event Device type and
[ Use ZCL spec + command frequency to infer event/ device ] \dentified event Identified

Fig. 4. Strategy to identify devices and events from inferred APL commands.

Table 1. Identifying devices and events from Inferred commands. (Resp= Response,
D=ZED/ZR, ND=NWZK discovery, *=burst repeats, **=broadcast, (x)= payload len)

Target Inference Rule Command |Device Type Event
ZC-ZED(11)|Resp = (12 || 21) Lock/unlock Door lock Lock/unlock
ZC - D(11) |Resp=13||15 != 12**|OnOff Outlet/ bulb |On/ off

ND =1 Resp |=11
ZC - D(14) Prec l— 17%* Level Control Smart Bulb Level changed
ZC - D(15) |ND =1 Resp != 12 |Color Control Color Changed
Zone Status (1*)|Motion Sensor|Motion
ZED-7C(17) Preceding Packet Zone Status Door Sensor |Open/ close

(1)
(Prec) I=13 Zone Status (2) |Flood sensor |Water leakage
Zone Status (3) |Audio sensor |Audio detected

are differentiated based on the logical device type and metadata variations (e.g.,
network discovery, end device initiator, etc.). As seen in Table 1, a command
inference rule specifies properties of APL commands that must be present in the
event burst (traffic). For instance, an APL command of payload length 11 bytes,
sent from ZC to ZED is Lock/ unlock command if the response packet (ZED
to ZC) is 12 or 21 bytes. Since same functional devices use same functionality-
specific commands, the inference rules constructed for a certain device also hold
true for other manufacturers’ devices. We stress-checked the rules against 200
MBs of Zigbee capture from our devices and third-party sources [17,21]. Note
that most APL commands (like color control), directly reflect the event and
device type. However, for outlets and bulbs, that use same OnOff command, the
device type is indistinguishable until an additional event, e.g., color change is
triggered. For Zone Status command, we observed behavioral consistencies that
allowed us to differentiate various types of sensors; e.g., Zone Status appears
twice in the event burst for flood sensor and thrice for the audio sensor. For
motion and door sensor, Zone Status appears once only. However, we noticed
that for motion sensors, the same burst pattern repeats after few seconds.

Identifying Events and Devices: We first filter all APL commands in the
event’s traffic sent to or received by the target logical address (e.g., Oxabcd)
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Fig. 5. Strategy to identify devices using periodic reporting patterns.

and discard any duplicate packet. We observed that the functionality-specific
command is generally the first APL command of the event burst; hence we also
discard bursts that do not have any frame with target payload lengths (11-
17 bytes) in the initial half of the burst. If a command with target payload
length exists, we use Table 1 to identify the APL command, event, and device
type. Finally, we combine the manufacturer’s identity extracted from the device’s
MAC OUI (e.g., PhilipL) to identify the device. Note that the exact device’s
identification depends on the MAC OUI showing real manufacturer, rather than
system-on-chip (SOC) manufacturer, e.g., SiliconL. In essence, we can passively
identify unknown events and devices from the target functional domains (bulbs,
outlets, door locks, and sensors) without the Network key or event signatures.

3.4 Device Identification using Periodic Reporting Patterns

Zigbee devices periodically report their status (battery level, firmware upgrades,
etc.) to ZC. Since every functional device has varied power consumption, the
manufacturers manipulate periodic reporting frequency, and specific frame at-
tributes to comply with the Zighee certification requirement of minimum 2 years
battery life [13]. The discrepancies in reporting patterns and intervals allow us
to devise unique device fingerprints and identify devices even when no event
occurs (e.g., during office hours). Unlike event bursts, reporting bursts have no
functionality-specific APL command and do not directly reveal device’s identity.

Devising Periodic Reporting Signatures: As shown in Figure 5, to devise
a device’s periodic reporting signature, we put the device in the idle state and
filter all APL commands exchanged between the device and ZC. After discarding
duplicate packets, we analyze the traffic to determine at least three bursts with
same reporting pattern and interval. Thus, the signature sign; is a sequence of
APL frames f; defined using logical device type of source (src) and destination
(dst), payload length (pl), and reporting interval (RI) and is represented as:

sign; = {f1, f2, f3, ...} where f; = {src;, dst;, pl;, RI; } (1)

Identifying Devices: We first filter APL commands from the traffic and dis-
card duplicate packets or bursts with any functionality-specific command. Next,
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we look for two similar bursts and correlate the observed pattern and interval
with the available signature set to identify the device. Rarely, but if two signa-
ture sets collide, we use additional attributes like MAC OUI to make a decision.
If no reporting signatures are available for a device, we wait for an event burst
to identify the device using command inference approach (Section 3.3).

4 Experimental Setup and Results

4.1 Automating Passive Inference Attacks with ZLeaks Tool

To automate the inference attacks depicted in Figure 3, we developed a command-
line tool in Python, named ZLeaks. ZLeaks takes Zighee PCAP capture as input
and determines the event occurrences and devices in the network. While in the
vicinity of the target network, the attacker can run ZLeaks on his laptop or
embedded board like Raspberry Pi with a single command. ZLeaks extracts all
APL commands from the captured traffic and uses Pyshark library [22] to parse
required frame attributes (e.g., payload length, logical types of nodes, etc.) in a
temporary CSV file for analysis. ZLeaks then attempts to identify events and de-
vices using either proposed APL inference rules (Section 3.3) or available report-
ing signatures (Section 3.4). Note that the attacker can automatically extract
reporting signatures of an idle Zigbee device using ZLeaks Signature Extractor.

4.2 Experimental Setup

Our device set comprised of 27 commercial off-the-shelf Zighee devices (ranging
from bulbs, locks, outlets, to various sensors) that were selected based on Ama-
zon’s popularity and manufacturer diversity. Amongst 27 devices, 19 devices
were unique, while a few non-unique devices were purchased from a different
source and tested to ensure that the evaluation results for a particular device
and model remain consistent. Furthermore, while we used 11 unique devices to
formulate inference strategy, we set aside 8 unique devices, at least one from
each functional domain as the unknown devices for the sole purpose of evalu-
ation. The known and unknown devices are listed for reference in Table 3 and
Table 4 respectively. The tests were conducted with 2 universal (manufacturer-
independent) hubs; SmartThings and Amazon Echo Plus and 3 vendor-specific
hubs; Philips Hue Bridge 2.1, Sengled Z02-hub, and Lightify Gateway. This is
by far the most extensive Zigbee device set used to evaluate Zigbee protocol.

We evaluated ZLeaks identification techniques in following three settings;

RF shield: It was used to i) study devices’ response to event triggers while
devising command inference rules, ii) collect the device’s reporting pattern, and
iii) perform a controlled evaluation of ZLeaks by simultaneously pairing multiple
devices with each hub. As depicted in Figure 6; the RF shield was connected to
the gateway to provide continued Internet access to ZC placed inside the shield.
To sniff the Zighee communication, a standard omnidirectional antenna (inside
the shield) was connected via an SMA cable to a low-cost TI CC2531 wireless
Zigbee sniffer [18] plugged into the laptop (outside the shield).
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Fig. 6. Experimental Setup for analyzing Zigbee Devices: SMA cable connects sniffer’s
antenna (inside RF shield) with TI CC2531 sniffer connected to the laptop outside.

IoT “Living Lab”: It is a realistic noisy IoT lab named “Mon(IoT)r Lab”
at Northeastern University [15], which has more than 100 smart devices already
connected over several wireless networks, along with various non-IoT networks.

Public Captures: We used Zigbee captures from; i) Wireshark forum [16],
and ii) Prior captures [9] available on Crawdad [17] to show that ZLeaks is in-
dependent of evaluation testbed, device set, and works for unknown devices. We
verified the results using the Network keys available with the capture files. Both
the captures contained only event bursts and did not include enough reporting
patterns to evaluate the periodic reporting approach.

4.3 Evaluation Metrics

We evaluated ZLeaks using three parameters; 1) Inferred APL commands, 2)
Event and device type extracted from APL command, and 3) Correlated periodic
reporting patterns. We used traditional accuracy metrics to evaluate parameters
1 and 3. As a particular inferred APL command always yields same results for
event and device, we evaluated parameter 2 using proposed Device Score scheme.
Traditional Metrics: We use True Positive Rate (TPR) and False Negative
Rate (FNR) to specify the rate of correct and missed (or out-of-order) obser-
vations, respectively. As evaluation results indicate, there are no False Positives
(FP) or True Negative (TN) outcomes, hence, we calculate accuracy, i.e., the
ratio of correctly inferred observations to the total number of observations, as:

TP
TPR (recall) = m (2)
FN
FNR = TP + FN’ (3)
TP+TN
Accuracy = * (4)

TP + TN + FP + FN’

Score (short for Device Score): It determines the amount of device
and event information extracted from the inferred APL command and device
OUI. We calculate Score as a sum of device type (DT), event type (ET) and
manufacturer’s identity (M), with weights of each attribute defined in Table 2.

Score = M + DT + ET (5)

11
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Table 2. Score Table for Evaluating Command Inference Approach

Attributes Score Example
Manufacturer (M) 0 = SOC OUI SiliconL, Ember, TexasIns, NordiacSE ..
1 = Real MAC OUI| PhilipsL, OSRAM, SmartThi, Zhejiang ..
0 = Unidentified -
. 1 = Uncertain door lock or bulb (different commands)
Device Type (DT) 1.5 = Indistinct either outlet or bulb? (same command)
2 = Identified Outlet, door lock, motion sensor, bulb ..
0 = Unidentified -
1 = Uncertain lock /unlock or on/off (different commands)
Event Type (ET) 1.5 = Indistinct either door lock or unlock? (same commands)
2 = Identified motion detected, color change, etc ..

To understand Score, consider switching on a bulb that triggers a functionality-
specific APL command from ZC to ZED of payload size 11 bytes. The highest
Score is 5 when all attributes are correctly inferred, and lowest is 0 when nothing
is inferred. As per Table 1, the command is either Lock/ unlock or On/off. From
Table 2, DT and ET are 1 if these two commands are indistinguishable. For
On/off command, DT (bulbs or outlet) and ET (on or off) are 1.5, whereas for
Lock/ unlock command, DT is 2 (lock) while ET is 1.5 (lock or unlock).

4.4 Device and Event Identification using Inferred APL Command

Controlled Evaluation in RF Shield: We simultaneously paired all compat-
ible devices with one hub at a time inside the RF shield and generated events
randomly. From the sniffed traffic, ZLeaks inferred functionality-specific APL
commands and MAC OUI for each device to determine triggered events and
devices. Since the inferred APL command and MAC OUI remain same for a
particular device-event pair (e.g., color change for Sengled bulb), the Score re-
mains same for every event prompt irrespective of the hub. Therefore, Table 3
reports findings of each device once. We see that distinct events like color change,
motion detected, etc., are easy to infer than binary events (e.g., on/off). Philips
bulb is an exception here as it uses distinct commands to represent on and off
events. Furthermore, we identified various sensors from a single Zone Status com-
mand based on behavioral consistencies (refer to rules in Table 1). To conclude,
the Score is dependent on the correct identification of the APL command and
the MAC OUI showing the real manufacturer e.g., PhilipsL. (Philips), Smart-
Thi/ Samjin (SmartThings), Ledvance (OSRAM), Zhejiang (Sengled), Jennic
(Aqgara), etc. ZLeaks identified all devices with an average Score of 4.3 out of 5
(i.e., 86.3% information was successfully extracted).

Realistic Evaluation in an IoT “Living Lab”: Next, we shifted all these
devices, hubs, and 8 unknown (unseen) devices to the IoT lab. Again, we si-
multaneously paired all devices to one hub at a time, generated random events,
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Table 3. Controlled Evaluation: Identifying Devices and Events using Inferred APL
Commands. Here, SMT= SmartThings, M= Manufacturer, DT= Device Type, ET=
Event type, and *= burst repeats after few seconds

Device (Model) Event OUl Command (#) M|DT|ET|Score
off PhilipsL |Off with effect 11212 5
Philips Hue Color Bulb  |{On PhilipsL |On/off: On 11212 5
(LCA-003) Color change|PhilipsL [Color Control 112 |2 5
Dim PhilipsL |Level Control 11212 5
Sengled Color Bulb C(')lor change Zhejz%ang Color Control 11212 5
(E11-N1EA) Dim Zhe]}ang Level Control 11212 5
On/off Zhejiang |On/Off 1|1.5|1.5] 4
Sengled White Bulb G14 |On/Off Zhejiang |On/Off 111.5(1.5] 4
Centralite Outlet (Mini) |[On/Off siliconL [On/Off 01515 3
Sonoff Outlet (S31 Lite) |On/Off texasIns [On/Off 01515 3
SMT Outlet (US-2) On/Off Smartthi|On/Off 11515 4
SMT Motion sensor (IM) [Motion Smartthi|Zone Status (1*)[ 1| 2 | 2 5
SMT Multisensor (250) |Open/close [samjin |Zone Status (1) |1| 2 |1.5| 4.5
Ecolink Water Sensor water leak |ember |Zone Status (2) [0 ] 2 | 2 4
Ecolink Sound Sensor Sound ember |Zone Status (3) [0] 2 | 2 4
Yale Door lock (YRD226)|Lock/unlock lember |Lock/Unlock 0| 2 |1.5| 3.5

Table 4. Realistic Evaluation: Identifying Unknown Devices and Events using Inferred
Commands. (M= Manufacturer, DT= Device Type, ET= Event type, *= repeats)

Device (Model) Event oul Command (#)|M|DT|ET|Score
Philips White Bulb gg PhilipsL 8§ /V(‘)’;:hoefe“ 1 g ; g
OSRAM Color Bulb On/off ledvance |On/Off 112 |1 4
(Sylvania Smart+) Cf)lor change|ledvance |Color Control 11212 5
Dim ledvance |Level Control 112 |2 5
SmartThings (SMT) Bulb|On/off SiliconL, [On/Off 0(1.5|1.5] 3
Agara Outlet (US) On/off jennic  |On/Off 1|1.5(1.5| 4
Ewelink Outlet (SA-003) |On/off TexasIns|On/Off 0|1.5[1.5| 3
SMT Motion Sensor IRM |Motion samjin |Zone Status (1*){ 1| 2 | 2 5
Visonic Door sensor MCT|Open/close |ember |Zone Status (1) [0| 2 [1.5| 3.5
Schlage Lock (Connect) |Lock/unlock [siliconl, |Lock/Unlock 0| 2 |1.5] 3.5

and analyzed the traffic with ZLeaks. Despite the noisy environment, the known
devices exhibited the same Score as reported in Table 3. The experimental re-
sults for unknown devices are presented in Table 4. Unknown devices with real
MAC OUTI and distinct event types, e.g., color change for Sengled bulb, were ac-
curately identified by ZLeaks. Overall, ZLeaks identified unknown devices with
an average Score of 4.2 out of 5 (i.e., identified 83.6% devices and events). We
conclude that despite devices exhibiting unique event signatures across different
hubs, the functionality-specific APL command remains same and can be used to
effectively identify any unknown device with a single event trigger.
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Table 5. Public Evaluation: Identifying Unknown Devices and Events using Inferred
Commands. (M= Manufacturer, DT= Device Type, ET= Event type, *= repeats)

Source Unknown Device MAC OUI|Command (#) M|DT|ET|Score
Wireshark |Motion Sensor 1 private Zone Status (1*)[ 0| 2 | 2 4
ZCL log [16]|Motion Sensor 2 none Zone Status (1*)[ 0| 2 | 2 4
Zigator [17] [SmartThings Outlet| ..

Stho-duos |(IM6001) samjin On/off 1|1.5|1.5] 4

Table 6. Evaluating APL Command Inference rules on Public Zigbee Capture [17].
Note: * implies that the command is identified, but not the state.

APL Commands Total Packets|Inferred Packets|Accuracy (%)
Zone Status Change 2916 2712 93.0
ZCL On || ZCL Off 2423 2175% 80.8
Door lock || Unlock Request 676 596* 88.1
Door lock || Unlock Response 403 370 * 91.8
Color Control, Level Control 0 0 0

Open World Evaluation on Public Captures: We evaluated ZLeaks over
public Zigbee captures and reported results in Table 5. In capture 1 [16], we found
2 unknown devices that were recognized as motion sensors due to the presence of
repetitive Zone Change commands. Capture 2 [17] had 1 unknown device which
used On/Off for events. Note that we removed device commissioning traffic
(including Network key) from both files to comply with our threat model.

As device identification is dependent on the correct inference of functionality-
specific APL commands, we also evaluated ZLeaks inference rules on capture
2 [17]. The results in Table 6 indicate that ZLeaks inferred functionality-specific
APL commands with 91.2% accuracy. We used our command inference strategy
on generic APL commands and were able to infer Device Announcement, Bind
Request and Response (RR), Link Quality RR, NWK Address RR, Parent An-
nouncement RR, etc., with 100% accuracy. Most of all, the 6 NWK commands
that Zigator [9] could not identify, were inferred with 85.7% accuracy.

4.5 Device Identification using Periodic Reporting Patterns

Controlled Evaluation in RF Shield: We simultaneously paired all known
devices with one hub at a time in an RF shield and left them in the idle state
for at least 3 hrs. This way, devices reporting the attributes every 5 or 10 mins
yielded 36 and 18 reporting patterns, respectively, which are sufficient to evaluate
two main features; reproducibility and uniqueness of periodic signatures. Table
7 summarizes the results of this experiment, with reporting intervals in second,
minute, and hour represented using letters s, m, and h. Note that several devices
exhibited more than one reporting pattern, e.g., for battery, temperature, etc.,
while few devices showed a different number of reporting patterns across different
hubs, e.g., SMT and Sonoff outlet. This essentially helped identify both the
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Table 7. Controlled Evaluation of Periodic Reporting scheme. Here, SMT= Smart-
Things, RI= Reporting interval, TPR= True positive rate, FNR = False negative rate

Device SMT v2 Hub Amazon Echo+ | Philips/ Sengled
RI [TPR[FNR| RI [TPR[FNR| RI [TPRJFNR
Centralite Outlet 5,10m | 1 0 | 5, 9m |0.982]0.018 N/A
Sonoff Outlet 5m 1 0 [5,10m| 1 0 N/A
SMT Outlet 5, 10m | 1 0 10m 1 0 N/A
Sengled White Bulb 5m 1 0 10m 1 0 15,20,25m| 1 0
Sengled Color Bulb 10m, 1h] 1 | 0 [10m, 1h| I | 0 |5,2025m| 1 | 0
Philips Hue Color Bulb | 1s, 2m | 1 0 |1s,2m | 1 0 1s, 2m 1 0
SMT Motion sensor (IM)| 5m 1 0 5m 1 0 N/A
SMT Multisensor 5m, 1h [0.975|0.025| 5m, 1h | 1 0 N/A
Ecolink water sensor 30, 30m| 1 0 N/A N/A
Ecolink sound sensor 27, 30m| 1 0 N/A N/A
Yale Door Lock 1h 1 0 10m [ 1] 0 N/A

Table 8. Realistic Evaluation of Periodic Reporting scheme. (@®= successful device
identification, ©= success using additional info, and O= resembled other device)

Device SMT v2 Hub|Amazon Echo+| Vendor Hub
15m(30m|1h|{3h({15m|30m|1h| 3h [15m[30m|1h|3h
Centralite Outlet o & 060 6 o o o
Sonoff Outlet o & o606 o o o
SmartThings (SMT) Outlet| ® | ® /@ ® | ® @ ©
Sengled (White) Bulb o o 06006 6 06 6 o o oo
Sengled (Color) Bulb o o o606 o 06 6 o o oo
Philips Hue (Color) Bulb ® & 06006 o 0o 0o o o o0
SMT Motion sensor (IM) O o060 O o o0 o
SMT Multi sensor OO el © o @ ©
Ecolink water sensor ® @ ® Not compatible
Ecolink sound sensor ® (@ ® Not compatible
Yale Door Lock OCle[o[e] @

device and the smart hub from the encrypted traffic. It is evident from a high
average TPR of 0.998 and low FNR of 0.002 that the periodic signatures were
identifiable and consistent over time, except once when the Centralite outlet and
SMT Multisensor showed two out-of-order packets and were not identified.

Realistic Evaluation in IoT “Living Lab”: Next, we shifted all the hubs,
and known and unknown devices to the Mon(IoT)r lab. We paired all compatible
devices to one target hub at a time and used the remaining devices as background
Zigbee noise sources. The devices were left in the idle state for 3 hrs, and ZLeaks
analyzed traffic after specific time intervals (15 mins, 30 mins, 1 hr, and 3 hrs).
In Table 8, devices that were distinctively identified after the specified time are
marked with a full circle, e.g., all outlets had reporting intervals of 5 and/or 10
mins; and were successfully identified within 15 mins. Half-circle indicates iden-
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tical reporting pattern and interval for two devices, e.g., both Yale and Schlage
lock (unknown device) reported the same pattern after 1 hr. In such a case, we
used additional parameters (e.g., MAC OUI or logical device type) to identify
the device. Finally, an empty circle depicts a complete resemblance between two
devices, e.g., SMT motion sensor IRM (an unknown device) and SMT multisen-
sor showed same patterns until the latter device reported its second pattern after
1 hr. In essence, it is quite concerning that the device and manufacturer identity
is leaked even in the device’s idle state. Note that we could not evaluate this
approach on public captures due to the absence of periodic reporting patterns.

5 Discussion and Related Work

5.1 Security Implications of Leaked Data

The know-how of devices in the smart home and their states (e.g., door unlocked
or bulb off) is crucial to the smart home’s security. A burglar can use this
information to get insight into users’ affluence and determine when the house is
vulnerable to intrusion. In addition, an attacker can use Common Vulnerabilities
and Exposures (CVE) database [23] to find and exploit unpatched vulnerabilities
in the identified devices. The vulnerable devices can be weaponized to spread
malware to the network [24], create IoT botnets [25] or carry out denial of service
attacks. The attacker may also use side-channel attack to hijack the vulnerable
hub [26]. From a business perspective, the leaked information can help Zigbee
manufacturers gain deep insights into users’ usage and activity patterns. This
information can be sold to advertisers for interest-based advertisements, online
tracking, or used in business decisions on future products. In short, our study
provides deep insights into potential information leakages right at the source.

5.2 Potential Countermeasures

ZLeaks demonstrates the significance of unencrypted metadata (MAC OUI,
frame, and payload lengths) in identifying functionality specific commands, events,
and devices in the Zigbee network. Although exponential padding [27] effectively
disguises payload lengths, it adds transmission overhead and increases power
consumption for low-power Zigbee devices. We suggest padding random bytes
in each payload (e.g., 0,1,2 or 3 bytes) and using the reserved field in the Zigbee
security header to denote the number of padded bytes. This way, even same APL
commands will have four different payload sizes, which will add enough entropy
to make the Zigbee commands indistinguishable. Secondly, Zigbee Alliance can
mandate the use of chipset manufacturer’s identifier as MAC OUI to hide the
real manufacturer’s identity. This alone reduces the average Score calculated for
unknown devices using the APL inference approach from 4.0 (80%) to 3.1 (62%).
The volumetric analysis also provides significant hints regarding the occur-
rence of an event or periodic reporting. To make events indistinguishable, prior
research [28,29] leverage mains-powered ZR or ZC to inject decoy packets in the
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Table 9. Privacy Implications of Leaked Information and Suggested Countermeasures.

Info |[Privacy Implication Countermeasure to disguise info
Devicel” Hijack vulnerable devices/ network|Use SOC MAC OUI to hide vendor
- Insight regarding user’s affluence |Use random payload padding to
- Online advertising complicate command inference
- Reveals user’s presence/ absence |Attribute Pipelining OR similar request
Event . . ;
daily routine -response patterns to hide events

traffic at pseudo-random intervals. However, decoy injector requires continuous
training to avoid detection by the attacker. An efficient way to disguise events
is to have similar event responses and reporting patterns for all devices. Alter-
natively, all attributes can be pipelined in a single packet instead of a series of
packets. The suggested countermeasures, as summarized in Table 9 require sig-
nificant design and implementation changes in the Zigbee protocol, as it is hard
to prevent proposed inference attacks with a simple workaround like using a se-
cure network or link key. We believe this is why the Zigbee Alliance is involved in
new smart home technology, Matter [30], which has security as the fundamental
design tenet and does not use Zigbee as the underlying IoT protocol.

5.3 Related Work

Privacy Analysis of Smart Home’s IP Traffic: Several research studies have
analysed the encrypted IP network traffic of smart homes to predict devices’
events [4,5], user’s habits [6], device types [1,2,3,31,32], and network anoma-
lies [33,34]. Few studies [8,35] also analyzed the IP traffic between the smart
app and cloud to detect misbehaving smart apps. Although these studies yield
promising results, there are a few limitations; 1) attacker requires physical access
to the network or mobile app, and 2) these approaches exploit traffic metadata
(i.e., payload length, DNS responses, etc.); hence their effectiveness is question-
able under realistic network conditions like Virtual Private Networks and Net-
work Address and Port Translation enabled. Although recent studies have lever-
aged packet-level signatures and temporal packet relations to identify events [5]
and devices [36] despite traffic shaping in place, these machine learning (ML)
approaches require re-training after firmware upgrades to extract new signatures.

Privacy analysis of Zigbee (non-IP) Traffic: Unlike IP traffic patterns,
Zigbee traffic patterns are challenging to obfuscate using conventional traffic
shaping, as it directly impacts power consumption and battery life. Still, very
few studies [7,8,37,38,39] have analyzed Zigbee traffic with the intent to study
information leakages right at the source. Zigator [9] exploited unencrypted at-
tributes of Zigbee frames, notably packet length, directions, radius, and logical
device type, to infer 6 out of 12 encrypted NWK commands. However, this infer-
ence approach does not apply to APL commands. Peekaboo [7] exploited traffic
rate variations, and IoTSpy [39] leveraged packet sequence features to fingerprint
known IoT events of merely 3 and 5 Zigbee devices, respectively. In addition,
Homonit [8] and IoT'Gaze [38] analyzed Zigbee event patterns to detect malicious

17
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Table 10. ZLeaks vs. existing Zigbee based schemes for identifying Event Type (ET),
Device Type (DT), Device Identity (DI) and applicability on Unknown devices (UD).

Research Unique Technique (Feature) Identified

Work |Hubs|Devices ET|DT|DIUD
Peekaboo [7]| 1 3 ML (traffic profiling) v v
Z-1oT [37] 1 8 ML (inter-arrival-times) v v
IoTGaze [38]| 1 5 ML (event pattern) v
IoTSpy [39] 1 5 NLP (frame len (fl), direction) v
Homonit [8] 1 7 Levenshtein Distance (fl, direction)| v/

Command Inference (metadata VIV vV

ZLeaks > 19 Correlation (periodic(reporting)) v v

smart home apps. However, all these studies are confined to the identification of
known events using a-priori event fingerprints. In contrast, ZLeaks infers event as
well as device information without collecting event fingerprints for every device.
Another study, Z-IoT [37] employed ML to identify device type by exploiting
inter-arrival-time of NWK frames and IEEE 802.15.4 Data requests of the idle
device. In contrast, ZLeaks exploits the device’s periodic reporting interval and
pattern (based on APL commands) to identify the device type and the device
with 99.8% accuracy. As evident from Table 10, our study was conducted on the
largest device set spanning 5 hubs and 19 unique Zigbee devices.

Security of Zigbee Protocol: Several attacks have been demonstrated
against Zigbee protocol so far, such as selective jamming [9], worm chaining [24],
command injection [40], replaying [41], etc., with an aim to recover the Network
key or make the target devices malfunction. Unlike ZLeaks, these attacks either
rely on leaked global link key, install (QR) codes or require attacker’s presence
during the device’s setup to identify key material.

6 Conclusion

This work highlighted that the power optimization-oriented design of Zigbee pro-
tocol has destroyed the legal concept of privacy in smart homes. We presented
ZLeaks [14], a privacy analysis tool that employs two inference techniques to
demonstrate how easily a passive eavesdropper can determine in-home devices
and events from the encrypted traffic, using a low-cost wireless Zigbee sniffer (TI
C(C2531). The evaluation conducted on an exhaustive set of 19 unique Zigbee de-
vices and 5 smart hubs indicates that the ZLeaks command inference technique
identified unknown events and devices with 83.6% accuracy, without using event
signatures. In addition, ZLeaks periodic reporting technique identified known
devices in the absence of any user activity with 99.8% accuracy. Finally, we eval-
uated our command inference rules on a third-party capture file and identified
functionality-specific APL commands with 91.2% accuracy, irrespective of the
secret keys. We conclude that the proposed inference attacks are impossible to
prevent without making significant design changes in the Zighee protocol.
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